
JOURNAL OF SIMULATION, VOL. 11, NO. 1, 2023 63

© ACADEMIC PUBLISHING HOUSE

Development of Biological Sequence

Approximate Matching Algorithms through

the Optimization of Reuse-Based Design

Hai Long1, Haihe Shi1,*, Linhui Zhong1, Haipeng Shi1, Songqing Xu2, Jun Sun2, Yong Qiu2, Changsheng Hu2

1School of Computer Information Engineering, Jiangxi Normal University, Nanchang 330022, China
2Jiangxi Cloudnet Technology Co., Ltd., Nanchang 330036, China

* Corresponding Author

Abstract: Biological sequence approximate matching

algorithms (BSAM) are often used to compare DNA or

protein sequences of different species, and to study the

relationship between sequences and the function of

sequences. The existing research mainly focuses on the

step optimization or parallel implementation of such

algorithms to improve efficiency, but the lack of

algorithmic framework research with high domain level

abstraction leads to the complexity and incomprehension

of the current BSAM algorithm, and it is difficult for

researchers to choose algorithms that meet individual

needs. By deeply analyzing the BSAM algorithm domain,

the feature-oriented domain modeling method and the idea

of software reuse are used to extract the common features

and separate the heterogeneous features of the BSAM

domain, so as to design reusable components, and further

combine the BSAM problem solving process to design the

BSAM domain feature model and component interaction

model. It is implemented using a highly trusted PAR

platform. By assembling a new variant of the algorithm

Misq, we demonstrate the optimization effect of reusable

components on algorithm design.

Keywords: sequence approximate matching, domain

modeling, feature model, interaction model, PAR platform

1. Introduction

The genetic sequence and protein sequence of an

organism preserve various information about the organism.

In terms of species evolution, biologists can compare the

DNA or protein sequences of different species, study the

evolutionary relationship between them through sequence

matching to determine the common ancestor between

species, and infer the evolutionary history of different

species; In terms of gene prediction, a new DNA or protein

sequence can be compared to a known sequence library to

determine its function. If the two sequences are very

similar, then they may have similar functions. Therefore,

sequence analysis can help us understand the relationship

between these sequences, helping biologists to study

problems such as species evolution, based on function and

biological processes. The research basis of gene sequence

alignment is also biological sequence approximation

matching technology. Since the first generation

sequencing technology was proposed in 1977, to the now

widely used second-generation sequencing technology,

and then to the third-generation sequencing technology

that has made breakthroughs over the years, biological

genetic data has been growing, and how to efficiently store,

access and query these massive genetic data is an urgent

problem[1].

Biological sequence approximate matching algorithms

(BSAM) is one of the important means to deal with the

above problems. For the BSAM method, FASTA [2] and

BLAST [3] are the two main heuristics for similar queries

based on the q-gram[4] indexing mechanism, and although

they are very efficient, they may not find the optimal

solution and may require a large amount of memory[5].

The methods for finding optimal solutions in BSAM can

be divided into four main methods [6]: dynamic

programming matrices, finite automata, bit parallelism,

and filters. The most basic method is the Dynamic

Programming Matrix [7] proposed by P. Sellers in 1980

(Dynamic Programming Matrix, DPM). It calculates all

the values of a two-dimensional array of size (m*n) to

determine which regions in the database sequence match

the query sequence, where m and n are the length of the

query sequence and the database sequence, respectively,

and their time complexity is O(mn) at worst. However, for

biological sequences, a sequence can be millions in length

and numerous, and it is too inefficient to use this method

directly, and most of these methods are online sequence

approximation matching algorithms, which are not

advantageous over offline sequence approximation

matching algorithms with index structures when

performing multiple matches for the same set.

The offline biological sequence approximation

matching algorithm is currently a widely used and efficient

BSAM algorithm. Its threshold-based BSAM algorithm is

very active[4,8-11] and has good results in the field of

approximate matching. The q-gram algorithm proposed in

1991[4] is a threshold-based sequence approximation

matching algorithm, which mainly divides the string of

equal length to obtain the gram features of the sequence,

then establishes an inverted index of the gram features,

uses count filtering as the similarity comparison function

to obtain the intermediate candidate sequence, and then

64 JOURNAL OF SIMULATION, VOL. 11, NO. 1, 2023

© ACADEMIC PUBLISHING HOUSE

verifies the online sequence approximation matching

algorithm of dynamic programming to obtain the final

result. The sequence division method of this method is

simple and does not need to be supported by word

segmentation tools, but the established index is large. The

SSjoin algorithm [8] proposed in 2006 is an algorithm

based on prefix filtering method for approximate sequence

matching, and the use of prefixes greatly reduces the space

for indexing. The Ed-join [9] algorithm proposed in 2008

uses non-matching as the filtering standard, starting from

the aspects of count and content. In 2008, Chen Li [10,11]

et al. proposed a variable-length feature filtering method

called vgram, which first needs to count the frequency of

the occurrence of various lengths of gram in the collection,

and then select gram through frequency information, and

use a heuristic rule to extract higher quality grams, which

reduces the size of the inverted index linked list, and also

leads to length filtering and position filtering, the former is

a string-based filtering method. The latter is a feature-

based filtering method. In 2013, Wang et al. proposed a

sequence approximation matching method called vchunk

[12] based on variable-length chunk features, which uses

chunks to limit the tail part of the string, thereby dividing

the string into variable-length non-intersecting chunks. In

addition, there are some algorithms based on the BWT

algorithm [13,14], the suffix tree[15,16] and the suffix

array[17] that have also achieved good results.

There are many algorithms in the field of BSAM, but

for the ever-increasing biological database, the BSAM

algorithm has the lack of filtering criteria, each filtering

criterion is limited to each algorithm and cannot be

expanded, the filter area selection is too complex or simple,

and the division of features and filtering means require

personalization. At present, the field focuses on optimizing

certain steps of algorithms [18] or parallelizing the

implementation of algorithms[19] to improve the

efficiency of algorithms, which cannot deal well with these

problems. At the same time, for the BSAM algorithm, the

researchers are only concerned with the algorithm that

looks wonderful in theory, that is, it has good time

complexity, while the developer only pursues the fastest

possible algorithm in practical application[20], which

makes it difficult to combine theoretical research and

practical application. Therefore, it is extremely important

to study the sequence approximation matching algorithm

from the domain abstraction level. By extracting the

common features and heterogeneous features in the BSAM

field, combining the algorithm process, establishing a

feature model, designing interaction models and algorithm

components, constructing the algorithm theoretical

framework, and then assembling the corresponding BSAM

algorithm, optimizing the implementation process of the

algorithm, integrating various heterogeneous features,

realizing the personalized requirements of the algorithm,

reducing the redundancy of algorithms in the development

and use of such fields, and improving the reliability of the

algorithm.

Next, Section 2 introduces the related techniques used

in the paper, namely the feature-oriented domain modeling

method and the PAR (Partion And Recur) method. Section

3 introduces the relevant concepts in the BSAM field,

deeply analyzes the BSAM field, uses the feature-oriented

domain modeling method FODM (Feature-Oriented

Domain Model)[21] to analyze and design the BSAM

algorithm, uses reusable design ideas to separate common

features and heterogeneous features, combines the

algorithm process, establishes a feature model in the field,

and designs an interaction model. In this section, the

abstract generic algorithm components in the BSAM field

are designed, and the abstract components are realized

using the new high-reliability software development

platform PAR[22-27] proposed by Xue Jinyun, and the

components are assembled. A new variant algorithm that

meets the personalized needs of the algorithm is generated

through experimental assembly, and the generated

algorithm is experimentally analyzed by using biological

sequences. Finally, the full text is summarized.

2. Related Theories and Methods

2.1. Domain Engineering

Domain engineering [28] is the main technology for the

production of reusable software assets, and it is the process

of establishing basic capabilities and necessary

foundations for the application engineering of a group of

similar or similar systems [21]. Domain engineering helps

to produce components with high reusability. Use domain

engineering to analyze the same statutes and architectures

in such systems, and abstract these same statutes and

architectures to form reusable information, which also

reflects the essential requirements of the system.

Domain-specific software reuse activities can be better

applied to domain engineering. Domain analysis is the

basis of domain engineering, its main purpose is to obtain

the domain model, and the role of the domain model is to

describe the common requirements in the domain. This

behavior needs to consider factors such as system

requirements and changes, determine the appropriate

scope, and clarify the common and variable characteristics

in the field. FODM [28] is a feature-oriented domain

modeling method proposed by Zhang Wei et al. This

method mainly discusses the Similar to the modeling

process of the domain algorithm, the general structure of

this method is shown in Figure 1.

Figure 1. Domain modeling process.

It takes the service, function, and behavior

characteristics of the domain as the key analysis objects,

and at the same time collects the interaction situation, non-

functional requirements, and related use cases in the

JOURNAL OF SIMULATION, VOL. 11, NO. 1, 2023 65

© ACADEMIC PUBLISHING HOUSE

domain for analysis. The follow-up work of this paper will

use the above method to analyze the BSAM field.

2.2. PAR Method

PAR is a unified framework for the formal development

of algorithms. It is automatically converted from the

generic specification and algorithm modeling language

Radl, the transformation rules of the formal specification,

the systematic algorithm programming methodology, the

generic abstract programming language Apla, and a series

of algorithms and program models. Tool composition. The

PAR method makes full use of functional abstraction and

data abstraction, and utilizes the top-down progressive

refinement program development method to design

abstract algorithms based on abstract functions and data,

and gradually refine them until they can be developed

using executable language statements. Using the PAR

method to develop algorithms can deepen our

understanding of algorithms, let us have a further

understanding of algorithm design strategies, design and

implement highly reliable components, and avoid usage

errors. Apla can directly use abstract data types and

abstract procedures to write programs, which is one of its

major features. The form is concise, highly abstract, and

the expression is unambiguous. Apla includes concepts

such as identifiers, keywords, standard procedures,

functions, type systems, symbolic expressions, program

structures, statements, procedures, and abstract data types

(abatract data type, ADT). Use sometype to represent type

variables, someproc to represent process variables, and

somefunc to represent function variables, which not only

supports type parameterization, but also supports process

parameterization and function parameterization.

The PAR method also includes a platform converter that

supports the automatic conversion of the generic abstract

programming language Apla into executable high-level

programming languages such as JAVA, C++, and

DELPHI, and also becomes the PAR platform. In the

follow-up, the generic abstract programming language

Apla in the PAR method will be used to realize the

components and their dependencies in the interaction

model, and then the component assembly algorithm will

be used to convert it into an executable program by using

the PAR platform.

3. Design and Implementation of BSAM Domain Model

3.1. Related Concepts of Approximate String Matching

Approximate string matching is string matching that

allows "errors" to occur [29]. Given two strings, a text

string T and a pattern string S, the characters in which all

exist in a given character table Σ, the number of "errors"

between the two strings is required to be within the given

"error" Within the range, the "error" here can be

represented by edit distance, Hamming distance, fragment

distance, etc. The most common representation is to use

the edit distance.

3.1.1. Edit distance

Edit distance, also known as Levenshtein distance [30],

was proposed by Vladimir Levenshtein in 1965 to measure

the similarity between two strings. Given strings s and t,

the meaning of edit distance is: the minimum number of

editing operations to transform string s into t. There are

three modes of operation: insert, delete and replace.

Generally, ed (s,t) is used to represent the edit distance

between strings s and t.

3.1.2. Approximate string matching

Given a string set m (the elements in the set are denoted

as t) and a query string s, the characters in it belong to a

character set ∑, determine an edit distance threshold τ,

and the set m meets ed(s,t)≤ The element t of τ is the

desired result, namely {t|t, s∈∑, ed(s, t)≤τ}.

3.2. Algorithm Analysis and Modeling in Bsam Domain

3.2.1. Domain analysis

In this section, the core ideas of the three classic

algorithms will be analyzed, and the gene sequence is used

as a demonstration here.

(1) Q-gram algorithm
Q-gram is the original threshold-based approximation

algorithm proposed in 1991. Its main process is as follows:

①Input a gene sequence s and a gene sequence set m,

judge the legitimacy of the sequence s and set m, if wrong,

the output is that the input information is wrong;

②Divide the gene sequence s by q to obtain gram

features, set the division value to q, and determine an edit

distance threshold τ;

③Perform q division on the given sequence set m to

obtain the gram feature, and set the division value and the

division value of the gene sequence s to the same value;

④Establish an inverted index for the gram features

obtained after dividing the sequence set m;

⑤Calculate the number and type of each gram of the

sequence s in the inverted index, and then count the

number of occurrences of each element t by counting the

number of occurrences of the gram feature of each element

t in the string set m;

⑥If the number of occurrences of t is greater than or

equal to max{|s|,|t|}-q+1-q*τ, the sequence t that initially

satisfies the condition is obtained. Perform the ⑥ process

on all the elements in the set to get the set n. Where |s|

represents the length of the sequence, and the function of

max is to find the maximum value;

⑦ Perform online approximate matching of the

sequence in the set n and the sequence s in the way of

dynamic programming, and obtain the final result.

(2) VGRAM
The VGRAM algorithm is a method based on variable-

length feature filtering proposed by Chen Li et al. in 2008.

The basic process is as follows:

①Check the sequence validity of the input sequence s

and sequence set m, and return an error message if there is

an error;

②Use the VGEN algorithm to convert the string s into

a gram feature set VG(s) with variable positions, and

determine the edit distance threshold τ;

66 JOURNAL OF SIMULATION, VOL. 11, NO. 1, 2023

© ACADEMIC PUBLISHING HOUSE

③In the same way, the element t in the sequence set m

is converted into a gram feature with variable length;

④Establish an inverted index for the gram feature set of

the sequence set m, and use the index structure to pre-

calculate VG (si) and NAG(si). NAG (si) is the NGA

vector of si, that is, for each string in the set, It is necessary

to calculate how many grams will be affected by k editing

operations;

⑤The common gram of the two sequences needs to be

greater than or equal to max(|VG(s)|-NAG(s,k),|VG(t)|-

NAG(t,k)) to get the set n;

⑥ For the sequence set n, perform an approximate

matching algorithm in the online dynamic programming

mode on each element in the n set and the sequence s to

obtain the final result.

(3) Ed-Join
Ed-join is an algorithm based on mismatched filtering

methods, and its basic process is as follows:

①Judging the legitimacy of the input gene sequence s

and gene sequence set m, if it is wrong, the output and input

are wrong;

②Divide the sequence set m into equal lengths of length

q to obtain the feature set of gram, and determine the edit

distance threshold τ;

③Take q*τ+1 prefix grams of two strings s and t. If

these prefixes are all different and τ<⌈ (|s|-q+1)/q⌉ ,

these sequences will not meet the requirements, and the

remaining The sequences form a set n;

④ For each element t in the set n, select all the

mismatched grams with the sequence s to form an array,

and calculate the L1distance between the two mismatched

grams, and then find the minimum modification times of

all grams of the rightmost character min-err, if

L1distance/2+1 is greater than τ, the element does not

meet the requirements. After traversing the set n, the

remaining element group set n2;

⑤Match each element t in the sequence set n2 with the

sequence s in an online approximate string matching in the

way of dynamic programming, and obtain the final result.

Combining the above three algorithms and various other

BSAM algorithms, we can analyze that, for the BSAM

algorithm, it is first necessary to determine an edit distance

threshold τ and a similarity comparison function Sim.

Then perform feature extraction on the set m and the

character string s to be matched. The value of the metric

function is obtained through the Sim function. When the

difference meets the requirements, a string result set

including a certain error is initially obtained. Finally,

online approximate string matching needs to be performed

on this result set to obtain a string that fully meets the

requirements. We can express the idea of these algorithms

using a unified flowchart, as shown in Figure 2.

Figure 2. Flow chart of BSAM algorithm.

3.2.2. Domain modeling

Based on the above analysis, we obtain a unified

algorithm flow in the BSAM field, and next, this paper will

use the feature-oriented modeling method FODM

proposed by Academician Mei Hong's team to model the

features of the Service S, Function F and Behavior

characteristics B in the BSAM field.

The core service in the BSAM domain is the sequence

approximation matching service

(sequence_approximate_match), which serves as the

service layer of the feature model.

For the functional layer, according to the algorithm flow

structure of BSAM, the sequence_approximate_match

service contains seven functions, namely: sequence

legitimacy check (seq_check), feature extraction operation

(fea_extra_mani), index establishment operation

(index_cre_mani), feature comparison (fea_compar),

boundary function determination (boundary_fun), Online

verification algorithm (online_verify), output (output).

Because some algorithms do not use an index structure,

indexing operations (index_cre_mani) are made optional

and the rest are required.

For the behavioral characteristics layer, the behavioral

characteristics of different functions are mainly analyzed,

and other functions will be reusable as common features.

In the functional layer, there are mainly different

behavioral characteristics of feature extraction operation

(fea_extra_mani) and feature comparison (fea_compar),

and for fea_extra_mani functions, there are overlapping

equal-length gram division algorithm (q-gram), variable-

length gram division algorithm (VGEN), unequal length

non-overlapping gram division algorithm (tail_restricted)

and extraction sequence content (content) four main

behavioral characteristics, the first three behavioral

characteristics are multiple choice of one way, and the last

behavioral characteristic can be combined with one of the

first three behavioral characteristics; for the fea_compar

function, there are five behavioral characteristics of count,

position, prefix, length, and non-matching (mis_match), of

which count, prefix, and non-match mis_match are

comparison operations for features, position and length is

a comparison operation against the original sequence.

Based on the above analysis, the characteristic model of

the BSAM domain is established as shown in Figure 3.

JOURNAL OF SIMULATION, VOL. 11, NO. 1, 2023 67

© ACADEMIC PUBLISHING HOUSE

Figure 3. BSAM feature model.

In the above feature model, seq_check, index_cre_mani,

boundary_fun, online_verify, output are common features

in the field, fea_extra_mani, fea_compar are the different

features in the field, where the main features that will be

reused are the common features in the feature model,

which will be reflected in the Apache program design.

In order to establish the corresponding components and

the Apla program, it is also necessary to establish the

interaction model between features, and the interaction

between features is mainly reflected in the dependence and

mutual constraints between features. Therefore, based on

the previously established algorithm unified flowchart and

feature model, this paper designs a feature interaction

model between BSAM.

In order to fully represent the entire interaction model,

two components are added here to directly compare

operations (compar_mani) and intermediate result sets

(mid_result). Analyze the constraints and dependencies

between features, and establish the interaction model of

algorithm components. The algorithm mainly includes two

change process characteristics: fea_extra_mani and

fea_compar. In addition, this paper takes the seq_check,

boundary_fun, online_verify, and output in the feature

model as the main components, and other features as

related data structures and auxiliary components, and then

the priority and dependencies between the components

establish the interaction model of the components, as

shown in Figure 4.

Figure 4. BSAM component interaction model.

In Figure 4, the features connected by the black

triangular arrows are required for the BSAM domain, and

the arrows show the execution priority of the features from

high to low; the white triangular arrow indicates the

transmission of data, for example: after the feature

extraction operation (fea_extra_mani), the corresponding

features of the sequence will be obtained, and these feature

data will be transmitted to the index creation operation

(index_cre_mani) for indexing; white prismatic arrows

indicate interactions between components, for example,

feature comparison (fea_compar) requires the use of

features in the index in an index creation operation

(index_cre_mani). Here is a summary of the component

model, the common part of the domain can be summarized

into 3 components, 3 components constitute 1 process:

(1) The first component is to obtain the sequence

characteristics, that is, the results obtained by

fea_extra_mani components, which includes seq_check

components, fea_extra_mani components and

index_cre_mani components;

(2) The second component is the data generated to

obtain the intermediate candidate string, that is, the

component boundary_fun and the component

compar_mani, the process includes fea_compar

component, boundary_fun component, compar_mani

member;

(3) The third component is to obtain the final result, that

is, to obtain the final result through verification, and the

process includes online_verify components and out_put

components.

The three components are summarized into a general

process sequence_approximate_match. The above

artifacts will serve as reusable artifacts in the BSAM

domain. For the differences in the field, it is necessary to

extract the feature extraction algorithm and boundary

function that need to be used in the fea_extra_mani

component and the boundary_fun component as a

component to create it. These components will be

represented as process parameters in the generic operation

in the following Apla program.

4. Apla Program Implementation and Experimentation

Based on the analysis of feature model and component

model in the previous section, this paper encapsulates five

abstract data type (ADT) components and one

sequence_approximate_match process. It was designed

and implemented using Apla, a generic abstract

programming language that uses the formal PAR method.

AQ and AR are keywords defined in the Radl specification

language to describe pre-assertion and post-assertion,

respectively. Due to space limitations, only the four main

common components are described in the Radl protocol.

4.1. Types and Algorithm Component Design

4.1.1. Sequence feature acquisition type component

Define ADT sequence_feature (someproc feature)
Function get_sequence_stream (filepath: array of

character);

Function check (sequence:array of character):array of

character;

Function get_feature (inSequence:array of character;

feature_m:someproc):map;

Procedure create_index (get_feature: somefunc);

Enddef;
The name of the ADT is sequence_feature, which is a

common component, which contains a process parameter

feature, which is used to pass characteristic data, that is,

the differential operation is input as a parameter, and the

similar common component below also serves this role. Its

function is to acquire sequence features. The role of the

get_sequence_stream is to read the sequence as a file

68 JOURNAL OF SIMULATION, VOL. 11, NO. 1, 2023

© ACADEMIC PUBLISHING HOUSE

stream; the function of check is to check whether the read

sequence is legal; the function of the get_feature is to

obtain sequence features, and the feature acquisition

algorithm is used as the operating parameter of the

function; the role of the create_index is to create an index.

Its Radl protocol:

|[in s[0:x]: array of character, p[0:y][0:z]: array of

character, feature: procedure; out fea[0:i]: array of set]|

AQ: x≥0∧y≥0∧z≥0

AR: i≥0

The process of entering the two strings to be matched,

and entering which features are extracted, requires that the

number of sequences and the length x, y, and z need to be

greater than or equal to 0. The output result is an array of

features, the number of which must be greater than 0.

4.1.2. Feature acquisition components

Define ADT feature

Procedure q-gram (inSequence, querySequence:array of

character; q:integer);

Procedure vgen (inSequence, querySequence: array of

character; minq, maxq: integer);

Procedure tail_restricted (inSequence, querySequence:

array of character);

Procedure content (inSequence, querySequence: array

of character);

Enddef;

The ADT is called feature, which contains a series of

generic subroutines to obtain different characteristics of

the sequence, and the process will be passed as process

parameters in other common constructions.

4.1.3. Intermediate candidate result type component

Define ADT mid_result (somefunc boundary_fun)

Function compare_feature (r_index: procedure;

boundary_fun: somefunc): integer;

Function compare_sequence (inSequence,

querySequence: array of character): boolean;

Function compar (result: integer; boundary_fun:

somefunc): set;

Enddef;

The name of this ADT is mid_result, which contains a

procedure parameter boundary_fun that is used to pass

different boundary functions. Its purpose is to obtain

intermediate results that are initially filtered, but there may

still be errors. The function compare_feature is to compare

features, and internally index establishment is used as a

process parameter. The role of the compare_sequence is to

compare sequences for non-feature comparisons, returning

true when the sequence meets the requirements, otherwise

returning false; The function compar is used to make a

judgment on the result after the feature comparison, and if

it is within the boundary, the sequence is stored in the set.

Its Radl protocol:

|[in: fea_s[0:x]: array of set, fea_p[0:y]: array of set; out:

value:integer]|

AQ: x≥0∧y≥0

AR: value:=(∀ value: 0 ≤ i ≤ x ∧ 0 ≤ j ≤ y ∧
fea_s[i]==fea_p[j]: value++)

The input is the feature sets fea_s and fea_p of strings,

the number of feature sets is required to be greater than or

equal to 0, and the output is the value returned after feature

comparison.

4.1.4. Boundary function type component

Define ADT boundary_fun

Function

compute_count_boundary(q,editDistDef:integer):integer;

Function

compute_miscontent_boundary(inSequence,querySequen

ce:array of character):integer;

Function

compute_length_boundary(inSequence,querySequence:ar

ray of character;editDistDef,q:integer):integer;

Function

compute_prefix_boundary(inSequence,querySequence:ar

ray of character;editDistDef,q:integer):integer;

Function

compute_location_boundary(inSequence,querySequence:

array of character;editDistDef,q:integer):integer;

Enddef;

The name of the ADT is boundary_fun, which contains

various generic subroutines to compare different types of

features, and the functions in this ADT will be passed as

function parameters in other common components.

4.1.5. Final result components

Define ADT final_result

Function verify (mid_result: set; inSequence: array of

character; editDistDef: integer): set;

Function computeLevenstein (inSequence,

querySequence: array of character): integer;

Procedure output (result: set);

Enddef;

The name of this ADT is final_result. Its role is to obtain

a sequence that exactly meets the requirements. The role

of verify is to perform online sequence approximation

matching of the obtained candidate results in a dynamic

programming manner. The role of output is to output the

final result.

Its Radl protocol is:

|[in: mid_p[0:x]: array of set, r: integer; out: final_p[0:y]:

array of set]|

AQ: 0≤x∧0≤r

AR: y≤x

The input is an intermediate candidate result set mid_p

and the editing distance threshold r, and the output is the

final result set final_p.

4.1.6. The sequence approximation matching process

Procedure sequence_approximate_match

(sequence_feature: ADT; mid_result: ADT; final_result:

ADT);

Its Radl protocol is:

|[in: s[0:x]: array of character, p[0:y][0:z]:array of set,

fea: someproc, boundary: somefunc, r: integer; out:

f[0:i][0:j]: array of set]|

AQ: 0≤x∧0≤y∧0≤z∧0＜q∧0＜r

AR: i≤y∧0≤j∧ed(s[x],p[y][z])≤r

JOURNAL OF SIMULATION, VOL. 11, NO. 1, 2023 69

© ACADEMIC PUBLISHING HOUSE

The input is pattern string S, string set P, feature

extraction process FEA, boundary function boundary, and

edit distance threshold R. The output is an array collection,

which requires that the editing distance obtained be less

than the predetermined editing distance, and the number of

elements that conform to the string set p must be greater

than or equal to the number of elements of the final result

set.

4.2. Misq Algorithm Assembly

In this paper, the feature acquisition method and count

of q-gram and content are combined with non-matching

feature comparison, and they are assembled into an

algorithm, named Misq.

Program Misq;

var

inSequence,querySequence:array of character;

q,editDistDef:integer;

databasemap:map(integer,array of character);

databasemap =

open(“D:/match/Misq/source_sequence.fasta”);

indexList = databaseMap.keySet();

begin

forach(i=0;i<=indexList.length();i++)

querySequence := indexList.get(i);

......//Program snippet, omitted

end;

procedure Misq_q-gram:new feature. q-gram

(inSequence,querySequence,q); ①

procedure Misq_content:new feature. content

(inSequence,querySequence); ②

ADT Misq_sequence_feature: new sequence_feature

(Misq_q-

gram,Misq_content); ...③

procedure Misq_compute_count_boundary: new

boundary_fun. compute_count_boundary (q,editDistDef);

④

procedure Misq_compute_miscontent_boundary: new

boundary_fun. compute_miscontent_boundary

(inSequence, querySe-

quence); ..⑤

ADT Misq_mid_result: new mid_result

(Misq_compute_count_boundary,

Misq_compute_miscontent_boundary); …………………

…….....⑥

ADT Misq_final_result: new

final_result(); ..⑦

procedure Misq_sequence_approximate_match: new

sequence_approximate_match (Misq_sequence_feature,

Misq_mid_re-sult,

Misq_final_result); ..⑧

begin

Misq_sequence_approximate_match

(Misq_sequence_feature, Misq_mid_result,

Misq_final_result);

end;

In the above Apla program, code blocks ① and ② are

the feature acquisition methods of the Misq algorithm; ③

acquisition of sequence features; ④ , ⑤ is a feature

comparison method; ⑥ to obtain intermediate or selective

results; ⑦ to obtain the final result; ⑧ main procedure.

4.3. Experiments

Computer configuration: processor is Intel(R) Core(TM)

i7-10700 CPU @ 2.90GHz 2.90 GHz, RAM: 8.00GB,

operating system: Windows 10.

Genbank is a DNA sequence database established by the

National Center for Biotechnology Information (NCBI),

this paper selects the sequence numbered EU660217 and

the length of 16283bp from Genbank for experiments, and

compares the algorithm Misq and q-gram algorithm

generated by assembly in a unified data set. Set the editing

distance threshold to 5 and the division value to 3.The

length of the substring is 30.The number of pattern strings

is 1, 10, 30, 50, 70, 90,and 110,and the sequence length in

the query sequence collection is fixed to 30 characters. The

experimental results are shown in Figures 5 and 6.

Figure 5. Comparison of candidate string time between the two

algorithms

Figure 6. Comparison of the verification string time of the two

algorithms.

As can be seen from Figure 5, the time spent by the two

algorithms to find the candidate set is very close in feature

comparison, and the time spent by the Misq algorithm is

slightly more than that of the q-gram algorithm. Figure 6

shows the time taken by the q-gram algorithm and the

Misq algorithm for final verification, and the verification

algorithms used by the two algorithms are consistent, and

it is clear that the time spent by Misq increases with the

number of pattern strings, and the time spent for

verification is much less than that of the q-gram algorithm.

70 JOURNAL OF SIMULATION, VOL. 11, NO. 1, 2023

© ACADEMIC PUBLISHING HOUSE

It can be seen that the Misq algorithm generated by

assembly has certain practicality.

5. Concluding Remarks

BSAM is an important algorithm in biological sequence

analysis, often used to compare DNA or protein sequences

of different species to study the relationship between

sequences and the function of sequences. However, there

are still some problems in this work in the biological field,

the BSAM algorithm has the lack of filtering criteria, each

filtering criterion is limited to each algorithm and cannot

be expanded, the filter area selection is complex or simple,

and the division of characteristics and filtering means

require personalization. Therefore, it is necessary to study

these algorithms from the level of the algorithm field.

This paper adopts the feature-oriented modeling method

FODM, extracts the common features and heterogeneous

features in the field, considers the main features such as

feature extraction operation (fea_extra_mani), feature

comparison (fea_compar), boundary function

determination (boundary_fun), online verification

algorithm (online_verify), etc., and analyzes and designs

the interaction model between the feature model and its

components in the BSAM field. And the generic abstract

program language Apache using the high-confidence

formal PAR method is implemented, and by custom-

assembling the algorithm of these components, the

implementation process of the approximate matching

algorithm of this biological sequence is optimized, the

reliability and abstraction of the algorithm is improved,

and finally the series of programs of the PAR platform are

converted into executable programs. Let people focus on

the research and development of the heterogeneous

characteristics of the algorithm, reduce the attention to the

redundant part of the algorithm, realize personalized needs,

deepen people's understanding of the algorithm, reduce the

workload of algorithm development, and help people

better choose the algorithm suitable for their own problems.

The easy verification of the Apla language ensures the

reliability of assembly algorithms, and feature-oriented

domain modeling can well extract the commonality and

heterogeneity between various similar algorithm domains,

make full use of the reusable components between these

algorithm domains, improve development efficiency, and

help people understand algorithms. The Apla language has

a good high abstraction, representing the algorithm

components, laying the foundation for the realization of

the personalized requirements of the algorithm. The

various methods and ideas in the field of BSAM in this

paper are not only very applicable to biological sequence

approximation matching algorithms, but also theoretically

can provide ideas for algorithm research in other fields in

bioinformatics, and the next step will continue to improve

the algorithm component library, for a variety of newly

researched BSAM algorithms, study their structural

principles, and add new components for the BSAM field

algorithm component library.

References

[1] Rusk N. Cheap third-generation sequencing. Nature

Methods, 2009, 6(4): 244-244.

[2] Lipman D J, Pearson W R. Rapid and sensitive protein

similarity searches. Science, 1985, 227(4693): 1435-1441.

[3] Altschul S F, Gish W, Miller W, et al. Basic local alignment

search tool. Journal of molecular biology, 1990, 215(3):

403-410.

[4] Jokinen P, Ukkonen E. Two algorithms for approximate

string matching in static texts//International Symposium on

Mathematical Foundations of Computer Science. Springer,

Berlin, Heidelberg, 1991: 240-248.

[5] Ma B, Tromp J, Li M. PatternHunter: faster and more

sensitive homology search. Bioinformatics, 2002, 18(3):

440-445.

[6] Navarro G. A guided tour to approximate string matching.

ACM computing surveys (CSUR), 2001, 33(1): 31-88.

[7] Smith T F, Waterman M S. Identification of common

molecular subsequences. Journal of molecular biology, 1981,

147(1): 195-197.

[8] Yang X, Wang B, Li C. Cost-based variable-length-gram

selection for string collections to support approximate

queries efficiently//Proceedings of the 2008 ACM SIGMOD

international conference on Management of data. 2008:

353-364.

[9] Bayardo R J, Ma Y, Srikant R. Scaling up all pairs similarity

search//Proceedings of the 16th international conference on

World Wide Web. 2007: 131-140.

[10] Li C, Wang B, Yang X. VGRAM: Improving Performance

of Approximate Queries on String Collections Using

Variable-Length Grams//VLDB. 2007, 7: 303-314.

[11] Yang X, Wang B, Li C. Cost-based variable-length-gram

selection for string collections to support approximate

queries efficiently//Proceedings of the 2008 ACM SIGMOD

international conference on Management of data. 2008:

353-364.

[12] Wang W, Qin J, Xiao C, et al. VChunkJoin: An Efficient

Algorithm for Edit Similarity Joins. IEEE Transactions

on Knowledge & Data Engineering, 2013, 25(8):1916-1929.

[13] Burrows M, Wheeler D. A block-sorting lossless data

compression algorithm. Digital SRC Research Report, 1994.

[14] Heng Li, Richard Durbin, Fast and accurate short read

alignment with Burrows–Wheeler transform, Bioinformatics,

Volume 25, Issue 14, July 2009, Pages 1754–1760

[15] Esko Ukkonen. Approximate String-Matching over Suffix

trees. Proc. CPM 93, Lecture Notes in Computer Science 684,

Springer 1993, 228—242.

[16] R.A. Baeza-Yates, GH. Gonnet. Fast string matching with

mismatches. Information and Computation, 1994,

108(2):187—199.

[17] Ma nber U, Myerst A G. Suffix arrays: A new method for

on-line string searches. Siam Journal on Computing, 1993,

22 (5):935-948.

[18] Sun Decai,Sun Xingming,Liu Yuling.A Filter Algorithm for

Approximate String Matching Based on Match-Region

Features. Journal of Computer Research and Development,

2010, 47(04):663-670.

[19] Wang jiaying, Wang Bin, Yang Xiaochun. A Space Efficient

Approach of Multicore Parallel Approximate Substring

Matching. Journal of Computer Research and Development,

2015, 52(S1):37-47.

[20] Navarro G, Raffinot M. Flexible pattern matching in strings:

practical on-line search algorithms for texts and biological

sequences. Cambridge university press, 2002.

[21] Li Keqin, Chen Zhaoliang, Mei Hong, Yang Fuqing. An

Outline of Domain Engineering. Computer scinence,

1999(05):21-25.

[22] Xue J. A unified approach for developing efficient

algorithmic programs. Journal of computer Science and

Technology, 1997, 12(4): 314-329.

JOURNAL OF SIMULATION, VOL. 11, NO. 1, 2023 71

© ACADEMIC PUBLISHING HOUSE

[23] Wang C J, Xue J Y. Formal derivation of a generic algorith-

mic program for solving a class of extremum problems//Proc

of the 2009 10th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Didtributed Computing, 2009: 100-105.

[24] Xue J. Genericity in PAR platform// Structured Object-

Oriented Formal Language and Method. Cham:Springer,

2015:3-14.

[25] Xue J. Two new strategies for developing loop invariants and

their applications. Journal of Computer Science and

Technology, 1993, 8(2):147-154.

[26] Xue J. Formal derivation of graph algorithmic program

susing partition-and-recur. Journal of Computer Science and

Technology, 1998, 13(6):553-561.

[27] Xue J Y, Zheng YJ, HuQ M, et al.P AR: A practicable for-

mal method and its supporting platform// Formal Meth-ods

and Software Engineering. Cham: Springer International

Publishing, 2018: 70-86.

[28] Zhang Wei, Mei Hong. A Feature-Oriented Domain Model

and Its Modeling Process,2003(08):1345-

1356.DOI:10.13328/j.cnki.jos.2003.08.001.(in Chinese)

[29] Navarro G A guided tour to approximate string matching.

ACM Computing Surveys, 2001, 33(1): 31-88.

[30] Navarro, Gonzalo. A guided tour to approximate string

matching (PDF). ACM Computing Surveys. 1 March 2001,

33 (1): 31–88 [19 March 2015]. doi:10.1145/375360.375365.

